JOM 24039PC

Preliminary Communication

Disproportionation of homoleptic rhodium carbonyls

Giuseppe Fachinetti and Tiziana Funaioli
Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, I-56126 Pisa (Italy)

Pier Francesco Zanazzi
Dipartimento di Scienze della Terra, Università di Perugia, Piuzza dell'Università, I-06100 Perugia (Italy)

(Received June 1, 1993)

Abstract

Both $\left[\mathrm{Rh}_{4}(\mathrm{CO})_{12}\right]$ and $\left[\mathrm{Rh}_{6}(\mathrm{CO})_{16}\right]$ disproportionate in pyridine to cis- $\left[\mathrm{Rh}(\mathrm{CO})_{2}(\mathrm{py})_{2}\right]^{+}$and $\left[\mathrm{Rh}_{5}(\mathrm{CO})_{13}(\mathrm{py})_{2}\right]^{-}$. In the same solvent, cis- $\left[\mathrm{Rh}(\mathrm{CO})_{2}(\mathrm{py})_{2}\right]^{+}$is reduced by $\mathrm{CO} / \mathrm{H}_{2} \mathrm{O}$ to $\left[(\mathrm{py})_{2} \mathrm{H}\right]\left[\mathrm{Rh}_{5}(\mathrm{CO})_{13^{-}}\right.$

 $(\mathrm{py})_{2}$], which has been structurally characterized.Solutions of rhodium carbonyls in amine catalyze important reactions [1] but little is known concerning the fundamental chemistry of rhodium carbonyls in the presence of nitrogen bases. Other carbonyls of metals of Groups $8-10$ have long been known to undergo disproportionation in the presence of nitrogen bases and the ionic products have been fully characterized [2]. Detailed knowledge of the chemical properties of the ions formed in the disproportionation of neutral cobalt carbonyls has been useful for understanding dihydrogen activation in the presence of bases [3]. However, there is no information available concerning the reactions with amines of the two known, stable homoleptic rhodium carbonyls, $\left[\mathrm{Rh}_{4}(\mathrm{CO})_{12}\right]$ and $\left[\mathrm{Rh}_{6}(\mathrm{CO})_{16}\right]$.

Rapid CO evolution follows dissolution of $\left[\mathrm{Rh}_{4}{ }^{-}\right.$ (CO) $\left.{ }_{12}\right]$ in anhydrous pyridine (py) and the resulting orange solutions are conductors. In the IR spectrum of the solution (Fig. 1(a)) the highest energy band (2100 cm^{-1}) is presumably due to a cationic rhodium carbonyl complex, while the two bands at 1818 and 1756 cm^{-1} can be attributed to edge-bridging CO groups of an unknown anionic rhodium cluster. Attempts to precipitate the cation or the anion arising from the py promoted $\left[\mathrm{Rh}_{4}(\mathrm{CO})_{12}\right.$] disproportionation invariably gave oils, and a different approach was necessary. It

[^0]consisted in characterizing the anion and required a reducing agent to convert the cation into a Rh^{0} carbonyl. In py, the latter disproportionated in turn, the anion finally becoming the only rhodium-containing complex in solution. This approach was suggested by the results which we had obtained treating a solution of Co^{2+} and $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$arising from the py-promoted disproportionation of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ with $\mathrm{CO} / \mathrm{H}_{2}$ [4]. Reduction of the cation occurred and $\left[(\mathrm{py})_{2} \mathrm{H}\right]\left[\mathrm{Co}(\mathrm{CO})_{4}\right]$ was the only cobalt-containing species. However, in the disproportionation of $\left[\mathrm{Rh}_{4}(\mathrm{CO})_{12}\right]$ the reduction of the cation required $\mathrm{CO} / \mathrm{H}_{2} \mathrm{O}$ rather than $\mathrm{CO} / \mathrm{H}_{2}$. The addition of water to a stirred, fully disproportionated py solution of $\left[\mathrm{Rh}_{4}(\mathrm{CO})_{12}\right]\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{Rh}_{4}(\mathrm{CO})_{12}=1\right.$, molar ratio) in py under CO forms CO_{2}. The band at 2100 cm^{-1} disappears and those at lower frequencies increase in intensity. On addition of $\mathrm{Et}_{2} \mathrm{O}$, red crystals were obtained in nearly quantitative yield.

This was characterized as $\left[(\mathrm{py})_{2} \mathrm{H}\right]\left[\mathrm{Rh}_{5}(\mathrm{CO})_{13}(\mathrm{py})_{2}\right]$ and $[\mathrm{pyH}] \mathrm{Cl}$ precipitated upon addition of LiCl to a solution in tetrahydrofuran (THF). In the ${ }^{1} \mathrm{H}$ NMR spectrum (THF- d_{8}) the resonances between 7 and 9 ppm (18.5 H) of the pyridine rings were accompanied by a resonance at $15.13 \mathrm{ppm}(1 \mathrm{H})$, attributed to H^{+}of the cation. During refinement of the solid state structure *, two molecules of non-Rh-coordinated py were resolved for each $\mathrm{Rh}_{5}(\mathrm{CO})_{13}(\mathrm{py})_{2}$ unit using difference Fourier maps. While it was impossible to distinguish between C and N atoms, a short distance of $2.518 \AA$ between two vertices of the two six-membered rings indicated a hydrogen bond between the pyridine molecules [5]. The molecular structure of the anion is shown in Fig. 2. The five Rh atoms are at the vertices of a trigonal bipyramid. There are seven terminal and six edge-bridging carbonyls, three spanning the equatorial plane, in addition to those bridging Rh1-Rh5, Rh2-Rh3 and Rh3-Rh4. The two coordinated py molecules are bonded to Rh3. The structure of

[^1]$\left[\mathrm{Rh}_{5}(\mathrm{CO})_{13}(\mathrm{py})_{2}\right]^{-}$can be compared with that of the isoelectronic $\left[\mathrm{Rh}_{5}(\mathrm{CO})_{15}\right]^{-}[6]$. The replacement of two carbonyls by two py molecules produces one more edge-bridging carbonyl but other structural features are unaltered. Likewise, in $\left[\mathrm{Rh}_{5}(\mathrm{CO})_{15}\right]^{-}$the average of the $\mathrm{Rh}-\mathrm{Rh}$ distance in the equatorial plane (2.697 \AA) is considerably shorter than the average of $\mathbf{R h}-\mathbf{R h}$ distance involving the axial rhodium atoms ($2.971 \AA$).

The IR spectrum of $\left[(\mathrm{py})_{2} \mathrm{H}\right]\left[\mathrm{Rh}_{5}(\mathrm{CO})_{13}(\mathrm{py})_{2}\right]$ in the CO stretching region is the same both in the solid state

Fig. 1. (a) IR spectrum of a fully disproportionated 0.02 M py solution of $\left[\mathrm{Rh}_{4}(\mathrm{CO})_{12}\right]\left(p_{\mathrm{CO}}=735\right.$ Torr); (b) IR spectrum of a 0.0133 M py solution of $\left[(\mathrm{py})_{2} \mathrm{H}\right]\left[\mathrm{Rh}_{5}(\mathrm{CO})_{13}(\mathrm{py})_{2}\right]$; (c) (a) - (b) difference spectrum.

Fig. 2. Molecular crystal structure of $\left[\mathrm{Rh}_{5}(\mathrm{CO})_{13}(\mathrm{py})_{2}\right]$-. Important molecular parameters (\AA and ${ }^{\circ}$): Rh1-Rh2 3.005(2), Rh1-Rh4 3.005(3), Rh1-Rh5 2.908(2), Rh2-Rh3 3.002(3), Rh2-Rh4 2.664(3), Rh2-Rh5 2.711(3), Rh3-Rh4 2.952(2), Rh3-Rh5 2.954(3), Rh4-Rh5 2.716(3), Rh3-N1 2.249(11), Rh3-N2 2.205(9), Rh2-C22 2.013(15), Rh3-C21 2.068(16), Rh3-C22 1.999(18), Rh3-C31 1.912(17), Rh4C21 1.964(15); Rh2-C22-Rh3 96.9(6), Rh3-C21-Rh4 94.1(6), N1-Rh3-N2 85.1(3), N1-Rh3-C21 88.7(4), N1-Rh3-C22 174.0(4).
and in py solution (Fig. 1(b); $\nu_{\mathrm{CO}}=2040 \mathrm{~m}, 2011 \mathrm{~m}$, $1980 \mathrm{vs}, 1818 \mathrm{~m}, 1756 \mathrm{~m} \mathrm{~cm}^{-1}$), showing that the anion $\left[\mathrm{Rh}_{5}(\mathrm{CO})_{13}(\mathrm{py})_{2}\right]^{-}$retains its structure in both phases. All the absorptions due to this anion can be detected in a fully disproportionated solution of $\left[\mathrm{Rh}_{4}(\mathrm{CO})_{12}\right]$ in anhydrous pyridine, together with the band at 2100 cm^{-1} of the rhodium countercation. The IR spectrum of the rhodium cation remained when the absorptions of a 0.0133 M py solution of $\left[(\mathrm{py})_{2} \mathrm{H}\right]\left[\mathrm{Rh}_{5}(\mathrm{CO})_{13}(\mathrm{py})_{2}\right]$ were subtracted to those of a fully disproportionated 0.020 M solution of $\left[\mathrm{Rh}_{4}(\mathrm{CO})_{12}\right]$ in the same solvent. Three bands ($2100 \mathrm{~m}, 2038 \mathrm{~m}$ and $1993 \mathrm{~s}, \mathrm{~cm}^{-1}$) resulted when a solution of $\left[(\mathrm{py})_{2} \mathrm{H}\right]\left[\mathrm{Rh}_{5}(\mathrm{CO})_{13}(\mathrm{py})_{2}\right]$ was kept under CO (Fig. 1(c)); under argon it reversibly converted into a single band spectrum ($1993 \mathrm{~cm}^{-1}$), suggesting that the rhodium cation is actually an equilibrium mixture of cis- $\left[\mathrm{Rh}(\mathrm{CO})_{2}(\mathrm{py})_{2}\right]^{+}(2100 \mathrm{~m}$ and $2038 \mathrm{~m} \mathrm{~cm}^{-1}$) and $\left[\mathrm{Rh}(\mathrm{CO})(\mathrm{py})_{3}\right]^{+}\left(1993 \mathrm{~cm}^{-1}\right)$. Separate experiments confirmed that preformed cis$\left[\mathrm{Rh}(\mathrm{CO})_{2}(\mathrm{py})_{2}\right]^{+}, \mathrm{PF}_{6}{ }^{-}$or $\mathrm{BPh}_{4}{ }^{-}$salt [7], loses CO

Fig. 3. Comparison between the IR spectra of a fully disproportionated 0.02 M solution of $\left[\mathrm{Rh}_{4}(\mathrm{CO})_{12}\right]$ in different media: (a) in py; (b) in THF containing $\mathbf{1 \%}$ en.
reversibly in py. The three bands were again obtained under CO, while the single band ($1993 \mathrm{~cm}^{-1}$) was observed under Ar. A gas-volumetric measurement gave a value of 1.55 for the ratio $\left[\mathrm{Rh}(\mathrm{CO})(\mathrm{py})_{3}\right]^{+} /[cis\left.\mathrm{Rh}(\mathrm{CO})_{2}(\mathrm{py})_{2}\right]^{+}$, at $p_{\mathrm{CO}}=735 \mathrm{Torr}$ at $30^{\circ} \mathrm{C}$.
cis $-\left[\mathrm{Rh}(\mathrm{CO})_{2}(\mathrm{py})_{2}\right]^{+}+\mathrm{py} \rightleftharpoons$

$$
\begin{equation*}
\left[\mathrm{Rh}(\mathrm{CO})(\mathrm{py})_{3}\right]^{+}+\mathrm{CO} \tag{1}
\end{equation*}
$$

Based on these findings, the py promoted disproportionation of $\left[\mathrm{Rh}_{4}(\mathrm{CO})_{12}\right]$ can be formulated as in eqn. (2).

$$
\begin{gather*}
3 \mathrm{Rh}_{4}(\mathrm{CO})_{12} \xrightarrow{\mathrm{py}} 2 \operatorname{cis}-\left[\mathrm{Rh}(\mathrm{CO})_{2}(\mathrm{py})_{2}\right]^{+}+2\left[\mathrm{Rh}_{5}(\mathrm{CO})_{13}(\mathrm{py})_{2}\right]^{-}+6 \mathrm{CO} \\
\mathrm{CO} \|-\mathrm{CO} \\
2\left[\mathrm{Rh}(\mathrm{CO})(\mathrm{py})_{3}\right]^{+} \tag{2}
\end{gather*}
$$

The stoichiometry of this reaction was confirmed by a gas-volumetric measurement. 2.38 mmols of CO per mmol of $\left[\mathrm{Rh}_{4}(\mathrm{CO})_{12}\right]$ were evolved on dissolving the neutral carbonyl in py at $30^{\circ} \mathrm{C}$ at $p_{\mathrm{CO}}=735$ Torr. A $\mathrm{CO} /\left[\mathrm{Rh}_{4}(\mathrm{CO})_{12}\right]$ molar ratio of 2 is obtained by correcting to this value with the CO evolved according to equilibrium (1).

The same ions, $\left[\mathrm{Rh}_{5}(\mathrm{CO})_{13}(\mathrm{py})_{2}\right]^{-}$and cis-[Rh$\left.(\mathrm{CO})_{2}(\mathrm{py})_{2}\right]^{+}$, are formed from the py-promoted disproportionation of $\left[\mathrm{Rh}_{6}(\mathrm{CO})_{16}\right]$: an IR spectrum superimposable on that of Fig. 1(a) was obtained on stirring a solution of $\left[\mathrm{Rh}_{6}(\mathrm{CO})_{16}\right]$ in py for three h under CO at room temperature. Moreover, IR spectroscopic evidence indicates that in a THF solution moderate amounts of ethylenediamine (en) promotes the disproportionation of both $\left[\mathrm{Rh}_{4}(\mathrm{CO})_{12}\right]$ and $\left[\mathrm{Rh}_{6}(\mathrm{CO})_{16}\right]$. The IR spectrum of the solution resulting from the py-induced disproportionation of $\left[\mathrm{Rh}_{4}(\mathrm{CO})_{12}\right]$ and that of the solution resulting from the en-promoted disproportionation in THF is represented in Fig. 3. The similarity between them suggests the formation of $\left[\mathrm{Rh}_{5}(\mathrm{CO})_{13}(\mathrm{en})\right]^{-}$and $c i s-\left[\mathrm{Rh}(\mathrm{CO})_{2}(\mathrm{en})\right]^{+}$, the en substituting two py molecules.

We are presently investigating whether and to what extent the reduction of cis- $\left[\mathrm{Rh}(\mathrm{CO})_{2}(\mathrm{py})_{2}\right]^{+}$to CO_{2} and $\left[(\mathrm{py})_{2} \mathrm{H}\right]\left[\mathrm{Rh}_{5}(\mathrm{CO})_{13}(\mathrm{py})_{2}\right]$ by $\mathrm{CO} / \mathrm{H}_{2} \mathrm{O}$ is relevant to the WGSR promoted by amine solutions of rhodium carbonyls [1].

Acknowledgements

We thank Dr. G. Fochi and Dr. F. Marchetti for helpful discussions, Mr. F. Dei Cima for technical assistance, Ministero della Ricerca Scientifica e Tecnologica (MURST) for financial support and Chimet S.p.a. for a loan of rhodium.

References

1 T.J.K. Doyama, K. Onitsuka, T. Shiohara and S. Takahashi, Organometallics, 10 (1991) 2493; R.C. Ryan, G.M. Wilemon, M.P. Dalsanto and C.U. Pittman, J. Mol. Catal., 5 (1979) 319; K. Kaneda, M. Hiraki, K. Sano, T. Imanaka and S. Teranishi, J. Mol. Catal., 9 (1980) 227; A.J. Pardey and P.C. Ford, J. Mol. Catal., 53 (1989) 247; H.K. Kang, C.H. Mauldin, T. Cole, W. Slegeir, K. Cann and R. Pettit, J. Am. Chem. Soc., 99 (1977) 8323.
2 W. Hieber, Adv. Organomet. Chem., 8 (1970) 1.
3 G. Fachinetti, T. Funaioli and M. Marcucci, J. Organomet. Chem., 353 (1988) 393; G. Fachinetti, G. Fochi, T. Funaioli and P.F. Zanazzi, Angew. Chem., Int. Ed. Engl., 26 (1987) 680.
4 G. Fachinetti, G. Fochi and T. Funaioli, J. Organomet. Chem., 301 (1986) 91.

5 H.I. Berthold, W. Preibisch and E. Vonholdt, Angew. Chem., Int. Ed. Engl., 27 (1988) 1524.
6 A. Fumagalli, T.F. Koetzle, F. Takusagawa, P. Chini, S. Martinengo and B.T. Heaton, J. Am. Chem. Soc., 102 (1980) 1740.
7 B. Denise and G. Pannetier, J. Organomet. Chem., 63 (1973) 423.

[^0]: Correspondence to: Professor G. Fachinetti or Dr. T. Funaioli.

[^1]: * Crystal data: Measurements were made at room temperature on a Philips PW1100 single-crystal diffractometer equipped with graphite monochromatized $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda=0.7107 \AA$). $\left[(\mathrm{py})_{2} \mathrm{H}\right]\left[\mathrm{Rh}_{5}(\mathrm{CO})_{13}(\mathrm{py})_{2}\right], \mathrm{C}_{33} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{13} \mathrm{Rh}_{5}, M=1195.5$, monoclinic, space group $P 2_{1} / a, a=20.137(3), b=21.131(3), c=$ 18.763(3) $\AA ; \beta=103.81(2)^{\circ} . V=7753.1 \AA^{3}, Z=8, D_{\text {calc }}=2.046 \mathrm{~g}$ $\mathrm{cm}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=20.5 \mathrm{~cm}^{-1}, F(000)=5280 . R=0.053$ and $R w$ $=0.061$ for 372 parameters and 4731 reflections $[I>3 \sigma(I)]$ measured in the range $0<\theta<20^{\circ}$.

